R.M.K. ENGINEERING COLLEGE

RSM Nagar, Kavaraipettai – 601 206

Department of Electronics and Instrumentation Engineering

Course Outcomes – EVEN Semester 2022-23

S.No	Semester	Theory/Practical	Course Code / Course Name
1	4	Theory	Numerical Methods
2	4	Theory	Digital Principles and System Design
3	4	Theory	Industrial Instrumentation
4	4	Theory	Control System Design
5	4	Theory	Linear Integrated Circuits
6	4	Theory	Universal Human Values II- Understanding Harmony
7	4	Practical	Linear and Digital Integrated Circuits Lab
8	4	Practical	Measurements and Transducers Lab
9	4	Practical	Foundation Lab on Internet of Things
10	4	Practical	Aptitude & Coding Skills-II
11	6	Theory	Factory Automation
12	6	Theory	Industrial Internet of Things
13	6	Theory	Communication Engineering
14	6	Theory	Embedded Systems
15	6	Practical	Industrial Instrumentation and IoT Lab
16	6	Practical	Industrial Automation Lab
17	6	Practical	Advanced Aptitude & Coding Skills -II
18	8	Practical	Project Work

FOUTH SEMESTER

20MA403 - Numerical Methods

COs	Course Outcome: The students, after the completion of the course, are expected to
CO1	Compute the solutions of algebraic, transcendental and the system of equations
CO2	Implement the numerical techniques of interpolation in equal and unequal intervals
CO3	Apply the numerical techniques of differentiation and integration for engineering problems.
CO4	Employ the various techniques and methods for solving first and second order ordinary differential equations.
CO5	Solve the partial differential equations with initial and boundary conditions by using certain techniques with engineering applications.

20EI401 DIGITAL PRINCIPLES AND SYSTEM DESIGN

COs	Course Outcome: The students, after the completion of the course, are expected to
CO1	Design Digital Circuits using simplified Boolean functions
CO2	Analyze and Design Combinational Circuits
CO3	Analyze and Design Synchronous Sequential Circuits
CO4	Analyze and Design Asynchronous Sequential Circuits
CO5	Interpret designs using Programmable Logic Devices
CO6	Write HDL code for Combinational and Sequential Circuits.

20EI402 INDUSTRIAL INSTRUMENTATION

COs	Course Outcome: The students, after the completion of the course, are expected to
CO1	Differentiate the construction and working of various temperature measurement devices.
CO2	Explain the construction and working of instruments used for the measurement of Pressure.
CO3	Describe the construction and working of instruments used for the measurement of level and humidity.
CO4	Study the different flow measurement techniques used in process industries

CO5	Describe the construction and working of instruments used for the measurement of speed, density and viscosity
CO6	Identify a suitable measuring instrument for an application.

20EI403 CONTROL SYSTEM DESIGN

COs	Course Outcome: The students, after the completion of the course, are expected to
CO1	Develop various representations of system based on the first principles approach.
CO2	Determine steady state error and error coefficients for various input signals.
CO3	Construct and interpret root locus, Bode plot, polar plot and Nyquist plot and infer the time domain and frequency domain specifications from the response.
CO4	Analyze and infer the stability of systems in time and frequency domain
CO5	Design and implement lag, lead, lag-lead compensators to meet the time and frequency domain specifications.
CO6	Determine the system equations in state variable form.

20EE304 LINEAR INTEGRATED CIRCUITS

COs	Course Outcome: The students, after the completion of the course, are expected to
CO1	Demonstrate the fabrication of IC's.
CO2	Analyze the performance characteristics of Op-Amp.
CO3	Design Op-Amp based circuits for engineering applications.
CO4	Classify and comprehend the working principle of data converters.
CO5	Illustrate the function of application specific IC's such as VCO, PLL and its applications.
CO6	Classify the different voltage regulators using Op-Amp.

20GE301 UNIVERSALHUMANVALUES II: UNDERSTANDING HARMONY

COs	Course Outcome: The students, after the completion of the course, are expected to
CO1	Become more aware of themselves, and their surroundings (family, society, nature);
CO2	Become more responsible in life, and in handling problems with sustainable solutions, while keeping human relationships and human nature in mind.

CO3	Have better critical ability.
CO4	Become sensitive to their commitment towards what they have understood (human values, human relationship and human society).
CO5	Apply what they have learnt to their own self in different day-to-day settings in real life, at least a beginning would be made in this direction.

20EI411 LINEAR AND DIGITAL INTEGRATED CIRCUITS LAB

COs	Course Outcome: The students, after the completion of the course, are expected to
CO1	Implement Boolean Functions.
CO2	Interpret the importance of code conversion.
CO3	Execute 4-bit shift registers.
CO4	Design and implement counters using specific counter IC.
CO5	Acquire knowledge on Application of OPAMP and Regulators.
CO6	Construct Voltage frequency converters and Regulators

20EI412 MEASUREMENTS AND TRANSDUCERS LABORATORY

COs	Course Outcome: The students, after the completion of the course, are expected to
CO1	Apply different types of transducers for measurement applications.
CO2	Evaluate the static and dynamic characteristics of measuring instruments.
CO3	Design signal conditioning circuit for various transducers
CO4	Construct the measurement systems using different types of resistance, capacitance and inductance transducers.
CO5	Interpret the results of analysis in oral form as well as in written form and draw meaningful conclusions.
CO6	Develop and test the real time application using LabVIEW.

20EC312 FOUNDATION LAB ON INTERNET OF THINGS (IoT)

COs	Course Outcome: The students, after the completion of the course, are expected to
CO1	Acquire knowledge on Internet of Things and its hardware and software components.
CO2	Demonstrate to interface I/O devices, sensors & communication modules.
CO3	Analyze by connecting and exchanging data with other devices and systems over the
COS	Internet.
CO4	Analyze to remotely monitor data and control devices.
CO5	Develop real life IoT based projects.
CO6	Integrate as a member in a group.

20CS414 APTITUDE AND CODING SKILLS – II

COs	Course Outcome: The students, after the completion of the course, are expected to
CO1	Develop advanced vocabulary for effective communication and reading skills.
CO2	Build an enhanced level of logical reasoning and quantitative skills.
CO3	Develop error correction and debugging skills in programming.
CO4	Apply data structures and algorithms in problem solving

SIXTH SEMESTER

20EI601 FACTORY AUTOMATION

COs	Course Outcome: The students, after the completion of the course, are expected to
CO1	Understand all the important components such as PLC, SCADA, DCS, I/O modules and field devices of an industrial automation system.
CO2	Develop PLC program in different languages for industrial sequential applications.
CO3	Configure and develop Feedback Control Schemes using PLC and DCS.
CO4	Select and use most appropriate automation technologies for a given application.
CO5	Ability to gain knowledge on the recent developments in industrial automation.
CO6	Understand the communication protocols

20EI602 INDUSTRIAL INTERNET OF THINGS

COs	Course Outcome: The students, after the completion of the course, are expected to
CO1	Understand IoT value chain structure (device, data cloud), application areas and
	technologies involved.
CO2	Understand various protocols in Data Link and Network Layer
CO3	Understand various protocols in Transport, Session, Service and Security Layer
CO4	Learn about Internet of Things with the help of projects designed for Raspberry P.
CO5	Explore various Case Studies related to Industrial Internet of Things
CO6	Understand IoT sensors and technological challenges faced by IoT devices, with a focus on
	wireless, energy, power, and sensing modules.

20EI603 COMMUNICATION ENGINEERING

COs	Course Outcome: The students, after the completion of the course, are expected to
CO1	Identify and understand analog communication techniques
CO2	Discuss about the pulse modulation techniques
CO3	Identify and Understand Digital communication techniques
CO4	Understand the various source coding techniques and apply the suitable error control codes
CO5	Understand about Spread Spectrum Techniques

Understand about Multiple	Access	Techniques
---------------------------	--------	------------

CO6

20EI603 COMMUNICATION ENGINEERING

COs	Course Outcome: The students, after the completion of the course, are expected to
CO1	Acquire knowledge on basic components of embedded system design
CO2	Analyze the concepts of embedded systems.
CO3	Describe the architecture and programming of ARM processor.
CO4	Use the system design techniques to develop software for embedded systems
CO5	Acquire knowledge on fundamentals of RTOS and its various scheduling policies
CO6	Model real-time consumer/industrial applications using embedded-system concepts

20EI611 INDUSTRIAL INSTRUMENTATION AND IOT LAB

COs	Course Outcome: The students, after the completion of the course, are expected to
CO1	Experiment the industrial process parameters such as flow, level and temperature.
CO2	Experiment the industrial process parameters such as pressure and viscosity.
CO3	Analyze pH, conductivity, UV absorbance and transmittance
CO4	Analyze physiological parameters such as BP, ECG and pulse rate.
CO5	Apply sensor output in cloud and IoT.
CO6	Evaluate the Calibration of ammeter and Voltmeter

20EI612 INDUSTRIAL AUTOMATION LABORATORY

COs	Course Outcome: The students, after the completion of the course, are expected to
CO1	Understand and Programming of PLC, SCADA and DCS
CO2	Ability to working with industrial automation system
CO3	Design and implement control schemes in PLC & DCS
CO4	Interface field devices with PLC & DCS

CO5	Understand various communication protocols
CO6	Identify a separate Team to do mini project as Team work.

20CS614 ADVANCED APTITUDE AND CODING SKILLS - II

COs	Course Outcome: The students, after the completion of the course, are expected to
CO1	Develop advanced vocabulary for effective communication and reading skills.
CO2	Build an enhanced level of logical reasoning and quantitative skills.
CO3	Develop error correction and debugging skills in programming.
CO4	Apply data structures and algorithms in problem solving.