R.M.K. ENGINEERING COLLEGE
RSM Nagar, Kavaraipettai - 601206

Department of Electrical and Electronics Engineering

List of courses offered during 2019-20 and 2020-2021
Even Semester

Sl. No.	Semester	Theory/Practical	Course Code / Course Name
1		Theory	MA8491 Numerical Methods
2		Theory	EE8401 Electrical Machines - II
3		Theory	EE8402 Transmission and Distribution
4		Theory	EE8403- Measurements and Instrumentation
5		Theory	EE8451- Linear Integrated Circuits and Applications
6		Theory	IC8451 -control systems
7		Practical	EE8411- Electrical Machines Laboratory - II
8		EE8461- Linear Integrated Circuits and Applications lab	
9		Theory	EE8412-Technical Seminar
10		Theory	EE8601 - Solid State Drives
11		Theory	EE 8691- Embetion and Switch Gear
12		Practical	EE8002 Design of Electrical Apparatus Special Electrical Machines
13		Practical	EE86681 Power Electronics and Drives Laboratory
14		Theory	EE8611 Mini Projest
15		Theory and Microcontrollers Laboratory	
16		Theory	EE6801- Electric Energy Generation Conservation and Utilization
17		EE6009 - Power Electronics for Renewable Energy	
18		Systems	
19		Theory	EE6757-Total Quality Management - Project work

Semester: 04 Course Name: Numerical methods (MA8491) Year of study: 2019-20 and 2020-21(2017 Regulation)	Level of Knowledge	
$\mathbf{C O}-\mathbf{1}$	Find the solutions of algebraic and transcendental equations	K1
$\mathbf{C O}-\mathbf{2}$	Choose power method for Eigen values	K1
$\mathbf{C O}-\mathbf{3}$	Apply the concept of Numerical differentiation and integration in engineering	K3
$\mathbf{C O}-\mathbf{4}$	Examine Initial value problem for Ordinary differential equation	K4
$\mathbf{C O}-\mathbf{5}$	Apply the boundary value problem in PDE and ODE	K3
$\mathbf{C O - 6}$	Solve the Linear system of Equation	K3

Semester: 04 Course Name: Transmission \& Distribution (EE8402) Year of study: 2019-20\& 2020-21 (2017 Regulation)	Level of Knowledge	
$\mathbf{C O}-\mathbf{1}$	To understand the importance and the functioning of transmission line parameters.	K2
$\mathbf{C O}-\mathbf{2}$	To understand the concepts of Lines and Insulators.	K2
$\mathbf{C O}-\mathbf{3}$	To acquire knowledge on the performance of Transmission lines.	K2
$\mathbf{C O}-\mathbf{4}$	To understand the importance of distribution of the electric power in power system.	K2
$\mathbf{C O}-\mathbf{5}$	To acquire knowledge on Underground Cabilitys	K2
$\mathbf{C O}-\mathbf{6}$	To become familiar with the function of different components used in Transmission and Distribution levels of power system and modeling of these components.	K3

Semester: 04 Course Name: Electrical Machines-II (EE8401) Year of study: 2019-20 \& 2020-21 (2017 Regulation)	Level of Knowledge	
$\mathbf{C O}-\mathbf{1}$	Ability to understand the construction and working principle of Synchronous Generator	K2
$\mathbf{C O}-\mathbf{2}$	Ability to understand MMF curves and armature windings $\mathbf{C O}-\mathbf{3}$	Ability to acquire knowledge on Synchronous motor.
$\mathbf{C O}-\mathbf{4}$	Ability to understand the construction and working principle of Three phase Induction Motor	K2
$\mathbf{C O}-\mathbf{5}$	Ability to understand the construction and working principle of Special Machines	K2
$\mathbf{C O}-6$	Ability to predetermine the performance characteristics of Synchronous Machines.	K3

Semester: 04 Course Name: Linear integrated circuits and applications EE8451 Year of study: 2019-20\& 2020-21 (2017 Regulation)	Level of Knowledge	
$\mathbf{C O - 1}$	Outline the fabrication process of IC	$\mathbf{K 2}$
$\mathbf{C O}-\mathbf{2}$	Illustrate the ideal and non ideal characteristics of op-amp	$\mathbf{K 3}$
$\mathbf{C O}-\mathbf{3}$	Explain various applications of op-amp.	$\mathbf{K 3}$
$\mathbf{C O}-\mathbf{4}$	Design the different types of oscillators and ADC,DAC	$\mathbf{K 3}$
$\mathbf{C O}-\mathbf{5}$	Illustrate various application ICs	$\mathbf{K 2}$
$\mathbf{C O - 6}$	Explain the working of special function ICs.	$\mathbf{K 2}$

Semester: 04 Course Name: Measurements and Instrumentation EE8403 Year of study: 2019-20\& 2020-21 (2017 Regulation)	Level of Knowledge	
$\mathbf{C O}-\mathbf{1}$	Outline the fabrication process of IC	$\mathbf{K 2}$
$\mathbf{C O}-\mathbf{2}$	Explain the working principle of electrical measuring instruments	K3
$\mathbf{C O}-\mathbf{3}$	Interpret the resistance, capacitance and inductance using bridges	K3
$\mathbf{C O}-\mathbf{4}$	Select the storage devices for measuring electrical quantities	$\mathbf{K 3}$
$\mathbf{C O}-\mathbf{5}$	Choose the analog and digital display devices for measuring electrical quantities	$\mathbf{K 2}$
$\mathbf{C O - 6}$	Identify the type of electrical transducers for physical quantities	$\mathbf{K 2}$

Semester: 04 Course Name: Control Systems-IC 8451 Year of study: 2019-20 (2017 Regulation)	Level of Knowledge $\mathbf{C O}-\mathbf{1}$ $\mathbf{C O}-\mathbf{2}$ Develop various representations of system based on the knowledge of Mathematics, Science and Engineering fundamentals. Illustrate the time response of first and second order systems using standard test signals and the use of PID controller in closed loop system.	K2
$\mathbf{C O}-\mathbf{3}$	Examine the frequency-domain response of various models of linear system.	K4
$\mathbf{C O}-\mathbf{4}$	Identify a compensator system for the given specifications.	K3
$\mathbf{C O}-\mathbf{5}$	Interpret characteristics of the system to develop mathematical model in state-variable form (state variable models)	K2
$\mathbf{C O - 6}$	Perceive the solution for complex control problem.	K5

Course Code: EE8411 Course Name: Electrical Machines Laboratory - II $\mathbf{C O}$ Course outcome(CO) - Statements $\mathbf{C O}-\mathbf{1}$	Ability to understand and analyze EMF and MMF methods
$\mathbf{C O}-\mathbf{2}$	Ability to analyze the characteristics of V and Inverted V curves
$\mathbf{C O}-\mathbf{3}$	Ability to understand the importance of Synchronous machines
$\mathbf{C O}-\mathbf{4}$	Ability to understand the importance of Induction Machines
$\mathbf{C O}-\mathbf{5}$	Ability to acquire knowledge on separation of losses

Course Code: EE8461 Course Name: Linear and Digital Integrated Circuits Laboratory $\mathbf{C O}-\mathbf{1}$ Course outcome(CO) - Statements $\mathbf{C O}-\mathbf{2}$ $\mathbf{C O}-\mathbf{3}$ Ability to understand and implement Boolean Functions $\mathbf{C O}-\mathbf{4}$	Ability to Design and implement 4-bit shift tegisters acquire knowledge on Application of Op-Amp
$\mathbf{C O}-\mathbf{5}$	Ability to Design and implement counters using specific counter IC.

| Course Code: EE8412
 Course Name:Technical Seminar
 CO
 CO 209.1
 CO 209.2
 To encourage the students to study advanced engineering developments
 CO 209.3To encourage the students to use various teaching aids such as overhead projectors, power point
 presentation and demonstrative models. |
| :--- | :--- |

Semester: 06 CourseName:Design of Electrical Apparatus(EE8002) Year of study: 2019-2020\& 2020-21 (2017 Regulation)	Level of Knowledge	
$\mathbf{C O}-\mathbf{1}$	Ability to understand the design consideration for rotating and static electrical machines	K2
$\mathbf{C O}-\mathbf{2}$	Ability to design field systems for its application	K3
$\mathbf{C O}-\mathbf{3}$	Ability to design single and three phase transformers.	K3
$\mathbf{C O}-\mathbf{4}$	Ability to design field and armature of DC machines.	K3
$\mathbf{C O}-\mathbf{5}$	Ability to design stator and rotor of induction motor.	K3
$\mathbf{C O}-\mathbf{6}$	Ability to design and analyze synchronous machines.	K4

Semester: 06 Course Name: Solid State Drives (EE8601) Year of study: 2019-20 \& 2020-21 (2017 Regulation)	Level of Knowledge	
$\mathbf{C O}-\mathbf{1}$	Ability to understand and suggest a converter for solid state drive	K2
$\mathbf{C O}-\mathbf{2}$	Ability to select suitability drive for the given application	K2
$\mathbf{C O}-\mathbf{3}$	Ability to study about the steady state operation and transient dynamics of a motor load system	K2
$\mathbf{C O}-\mathbf{4}$	Ability to analyze the operation of the converter/chopper fed dc drive	K3
$\mathbf{C O}-\mathbf{5}$	Ability to analyze the operation and performance of AC motor drives	K3
$\mathbf{C O - 6}$	Ability to analyze and design the current and speed controllers for a closed loop solid state DC motor drive	K3

Semester: 06 Course Name: Protection and Switchgear (EE8602) Year of study: 2019-20\& 2020-21 (2017 Regulation)	Level of Knowledge	
C302.1	Explain the causes of abnormal operating conditions of the apparatus and system.	K2
C302.2	Illustrate the Characteristics \& functions of Electromagnetic Relays.	K2
C302.3	Apply different protection schemes for apparatus protection	K3
C302.4	Explain the characteristics and functions of Static \& Numerical Relays	K2
C302.5	Demonstrate the various abnormal behaviour happens during circuit breaker operation	K 2
C302.6	Explain the working of different types of Circuit Breakers	K 2

Semester: 06 Course Name: Embedded Systems-EE 8691 Year of study: 2019-20\& 2020-21 (2017 Regulation)	Level of Knowledge CO1 Understand and Analyze Embedded systems.	K4
CO2	Distinguish the bus communication in processors.	K4
CO3	Operate various Embedded Development Strategies	K3
CO4	Understand basics of Real time operating system.	K2
CO5	Classify various processor scheduling algorithms.	K2
CO6	Interpret an embedded system for a given application.	K3

Semester: 07 Course Name: SPECIAL ELECTRICAL MACHINES (EE8005) Year of study: 2019-20\& 2020-21 (2017 Regulation)	Level of Knowledge	
CO1	Explain the performance characteristics of synchronous reluctance motors.	K 2
CO2	Classify the excitation modes of stepping motor	K 2
CO3	Construct the power converter circuits for Switched reluctance motor	K 3
CO4	Analyze the magnetic characteristics of brushless D.C motor	K 4
CO5	Compare the control methods of permanent magnet synchronous motor	K 4
CO6	Analyze the logical sequence operation of special machines by using Software program.	K 4

Semester: 06 Course Name: Microprocessors and Microcontrollers Laboratory(EE8681) Year of study: 2019-20\& 2020-21 (2017 Regulation)	Level of Knowledge	
CO1	Develop the simple arithmetic operations using 8085 processors	K3
CO2	Explain the interfacing techniques using 8051 microcontrollers	K2
CO3	Analyze two 8051 kits using serial communication.	K4
CO4	Develop simple programs using 8051 controllers	K3
CO5	Demonstrate basic instructions using 8051 microcontroller	K2
CO6	Design and implementation of embedded system based projects	K6

Semester: 06 Course Name: Power Electronics and Drives Lab(EE8661) Year of study: 2019-20\& 2020-21 (2017 Regulation)	Level of Knowledge	
CO1	Demonstration of firing circuits	K2
CO2	Analyze static and dynamic characteristics of switching devices	K4
CO3	Experiment with converters.	K3
CO4	Experiment with switch mode power supplies.	K3
CO5	Experiment with switching regulators.	K3
CO6	Analyze the converter circuits using simulation software	K4

Semester VIII

Semester: 08 Course Name: Electric Energy Generation, Utilization and Conservation (EE6801) Year of study: 2019-20	Level of Knowledge	
C409.1	Explain the various concepts of renewable energy resources	K2
C409.2	Interpret energy conservation and energy auditing.	K2
C409.3	Develop the illumination systems based on various lightning system	K2
C409.4	Demonstrate the different methods of electric heating and welding	K 2
C409.5	Illustrate the traction system and their performance	K 2
C409.6	Organize the engineering aspects of electrical energy generation and utilization.	K 2

Semester: 08 Course Name: EE6009 Power Electronics for Renewable Energy Systems Year of study: 2019-20		Level of Knowledge
C410.1	Interpret knowledge about the stand alone and grid connected renewable energy systems	K2
C410.2	Derive the criteria for designing the power converters for renewable energy applications	K2
C410.3	Analyze the various operating modes of wind electrical generators and solar energy systems	K4
C410.4	Design different power converters for renewable energy systems	K4
C410.5	Develop maximum power point tracking algorithms	K3
C410.6	Analyze power system operation, stability, control and protection	K3

Semester: 08 Course Name: GE6757 Total Quality Management Year of study: 2019-20	Level of Knowledge	
C411.1	Facilitate the Quality Management principles and its process	K3
C411.2	Explain the customer care management systems	K2
C411.3	Apply the leadership qualities in management	K2
C411.4	Explain the Benchmark in manufacturing system	K2
C411.5	Explain the ISO Auditing system	K4
C411.6	Design the techniques for quality management in the field of manufacturing and services processes.	

Semester: 08 Course Name: Project Work(EE6811) Year of study: 2019-20		Level of Knowledge
C412.1	Explain the engineering concepts	K2
C412.2	Solve problems to new situations with knowledge, facts, techniques and rules in a different way	K3
C412.3	Discover new computational platform in electrical \& electronics fields	K4
C412.4	Determine the performance of complex power network	K5
C412.5	Formulate real world problem with global outlook	K6
C412.6	Improve the managerial skills to meet the industry	

